Issue 8, 1992

Photoelectron spectroscopy of polycrystalline platinum catalysts

Abstract

Pt black catalysts have been characterized by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The spectra measured after standard purification (O2 and H2 at 600 K) compared well with those of a purified reference Pt foil. All samples exhibited pronounced Fermi-edge intensities in UPS although only 60–70% Pt was detected on their surfaces by XPS, the remainder being C and O. Line analysis of the C 1s XPS, region showed the presence of partly oxidized graphite and hydrocarbon polymer, likely in three-dimensional islands. OH/H2O species attached to the metallic Pt sites were detected by UPS bands, in agreement with O 1s XPS line analysis. Similar spectral features are recorded at 600 K. Carbon could not be removed entirely by O2 up to 850 K; hydrogen did not remove surface oxygen even up to 750 K. UPS features of C on Pt used in hydrocarbon reactions were similar to those reported for amorphous hydrogenated carbon overlayers. Consequences of the present findings for the catalytic properties of Pt in n-hexane reactions and the quantification of H2–O2 titration are discussed briefly.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1992,88, 1179-1189

Photoelectron spectroscopy of polycrystalline platinum catalysts

Z. Paål, R. Schlögl and G. Ertl, J. Chem. Soc., Faraday Trans., 1992, 88, 1179 DOI: 10.1039/FT9928801179

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements