Issue 3, 1991

Structural effects of polydispersity in charged colloidal dispersions

Abstract

Experimental information on the microscopic structure of charged colloidal dispersions is usually extracted from the intensity of scattered light l(k) which can be linked to the ‘measured structure factor’SM(k). A reinterpretation of given experimental results for SM(k) is given in terms of a size and charge polydisperse model and the systematic analysis of the effects of polydispersity on SM(k). In our model, the interaction between macroions is assumed to be of a Yukawa type and the polydispersity is characterised by histograms with standard deviations from 10 to 40% with up to 10 components. The partial structure factors Sαβ(k) are evaluated by solving the multicomponent Ornstein–Zernike (OZ) equations in connection with the thermodynamically self-consistent closure of Rogers–Young (RY). The accuracy of the RY approximation is demonstrated by comparing the results with simulation data on monodisperse Yukawa systems. The results for SM(k) for polydisperse systems show significant differences from results obtained by treating the systems as being monodisperse. For SM(k) a large increase is found at small k as well as a shift in the main peak. These features are discussed in terms of the fluctuation and scattering abilities of each component of the dispersion. The role played by the charge and the size polydispersity is also analysed by introducing the generalised Bhatia–Thornton structure factors. Finally, SM(k) is compared with scattering data. Quantitative agreement is found for all k values and, in particular, in the range of small k in which all one-component models are particularly inaccurate. The difference between SM(0) for a polydisperse system and the isothermal osmotic compressibility is emphasised.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1991,87, 379-390

Structural effects of polydispersity in charged colloidal dispersions

B. D'Aguanno and R. Klein, J. Chem. Soc., Faraday Trans., 1991, 87, 379 DOI: 10.1039/FT9918700379

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements