Issue 0, 1980

Thermodynamic studies of cryptand 222 and cryptates in water and methanol

Abstract

Enthalpies of solution in water and in methanol are reported for a number of cryptate electrolytes ([M+222]+X) and in conjunction with data on X yield values for the enthalpy of transfer, ΔH°t, of [M+222] ions from water to methanol. Enthalpies of complexing of cations with cryptand 222 have been determined in water and methanol; when combined with known values of ΔH°t(M+) and the presently determined value of ΔH°t(222), they yield, via a thermodynamic cycle, values of ΔH°t for the ions [M+222] where M+= Li+, Na+, K+, Rb+, Cs+ and Ag+. The two methods of obtaining the ΔH°t values are in good agreement with each other.

Solubility measurements on the perchlorates of [Na+222] and [K+222] yield values of ΔG°t([M+222]) from water to methanol. These values are also obtained from a thermodynamic cycle involving known values of ΔG°t(M+), the free energies of complex formation in water and methanol and the presently determined value of ΔG°t(222). The direct values and the cycle values are again in good agreement.

ΔH°t, ΔG°t and ΔS°t values for transfer of the complexed ions [M+222] vary considerably with the central cation M+(M+= Li+, Na+, K+, Rb+, Cs+ and Ag+) and it is clear that the surrounding cryptand does not isolate the central ion from the environment. Also, various single-ion assumptions that require the constancy of ΔG°t([M+222]) and ΔH°t([M+222]) with M+ are not valid for the water to methanol transfer.

Partition coefficients for the hypothetical extraction process M+(aq)+222(aq)→[M+222](methanol) have been obtained and it is shown that by comparison with the simple partition M+(aq)→ M+(methanol), greatly enhanced cation selectivities are observed. The largest selectivity enhancement occurs with the ions Ag+ and Li+, where the complex extraction equilibrium favours the extraction of Ag+ by a factor of 4 × 109 over the simple partition.

Ion-pair partition coefficients have also been obtained for the species [Na+222]ClO4 and [K+222]ClO4; extraction of the latter is favoured by a factor of 1.6 × 102. This may be compared to a factor of 2.7 × 102 in favour of the potassium salt when extracted as the pair of ions ([M+222]+ ClO4) and to a factor of 0.61 for extraction as the uncomplexed K+ and Na+ cations.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 1, 1980,76, 869-884

Thermodynamic studies of cryptand 222 and cryptates in water and methanol

M. H. Abraham, A. F. D. De Namor and R. A. Schulz, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 869 DOI: 10.1039/F19807600869

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements