Volume 67, 1971

Vibrational relaxation of carbon monosulphide

Abstract

The relaxation of vibrationally excited CS, formed in the flash-initiated reaction: O(3P)+CS2→ SO + CS, has been studied by monitoring the absorption of the A1Π—X1Σ+(2,1) band photoelectrically. Rates of decay were measured in the presence of various added gases, and hence rate constants determined for the de-excitation of CS(ν= 1) by ortho-H2, para-H2, HD, 3He, D2, 4He, N2O, CO2, H2O, D2O, H2S and D2S. The much greater efficiency of N2O compared to CO2 shows clearly how the probability of vibration-vibration energy exchange is enhanced if both species are infra-red active. Vibration-rotation energy transfer may occur with the collision partners which have small moments of inertia. Where appropriate, experimental transition probabilities are compared to those predicted by Sharma's recently published theory.

Article information

Article type
Paper

Trans. Faraday Soc., 1971,67, 2575-2585

Vibrational relaxation of carbon monosulphide

C. Morley and I. W. M. Smith, Trans. Faraday Soc., 1971, 67, 2575 DOI: 10.1039/TF9716702575

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements