Volume 50, 1970

Electrical conductivity of melts and their ability to form glasses in the system Ge + As + Te

Abstract

In the system Ge + As + Te, the heavy Te atom facilitates the formation of mesomeric -bonding systems. The glass forming regions are thus small and depend strongly on the quenching conditions. As in the systems Ge + Sb + Se and Ge + As + Se all metallically conducting melts in the system Ge + As + Te solidify to a crystallline structure even when quenched in water. However, not all semiconducting melts belonging to this system become glassy under these conditions. As expected, the transition from melts solidifying to a glass structure to those solidifying to a crystalline structure is more gradual, as is also the transition from metallic to semiconducting melts. All the semiconducting melts become more or less metallically conducting at temperatures between 900 and 1000 °C. The transition can be described by a parabolical or a log log dependence on temperature.

In the chalcogenide systems the melting process often enforces the same bonding mechanism with similar atomic short range order as does the application of high pressures or of strong electric fields. This is especially the case at high temperatures. The enforced mobility of the atoms, their tighter packing and the effect of electrical conductivity often act in the same direction, enhancing structural changes in the same direction.

Article information

Article type
Paper

Discuss. Faraday Soc., 1970,50, 35-44

Electrical conductivity of melts and their ability to form glasses in the system Ge + As + Te

H. Krebs and P. Fischer, Discuss. Faraday Soc., 1970, 50, 35 DOI: 10.1039/DF9705000035

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements