Volume 49, 1970

Ultrasonic relaxation of rotational-isomeric equilibria in polymer solutions

Abstract

The sound absorption per wavelength µ in solutions of polystyrene in benzene and carbon tetrachloride deviates from proportionality with frequency in the low MHz range. This could be accounted for with good agreement by an additional, Debye-shaped excess absorption. Various models for the relevant relaxation process are discussed; the most probable one is the thermal relaxation of a rotational-isomeric equilibrium within the polymer chain, consisting of a rotation of a single monomer unit. Under that assumption, from the temperature dependence of position and amount of the absorption maximum the following data of the rotational potential were calculated: separation of the equilibrium energies ΔH= 0.9 kcal/mol, activation energy ΔH12= 7.5 kcal/mol, frequency factor ν= 1.4 × 1012 s–1.

Article information

Article type
Paper

Discuss. Faraday Soc., 1970,49, 238-243

Ultrasonic relaxation of rotational-isomeric equilibria in polymer solutions

H.-J. Bauer, H. Hässler and M. Immendörfer, Discuss. Faraday Soc., 1970, 49, 238 DOI: 10.1039/DF9704900238

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements