Issue 4, 2011

Photo-sensitive PMMA microgels: light-triggered swelling and degradation

Abstract

Two classes (type A and type B) of novel photolabile divinyl functionalized crosslinkers based on o-nitrobenzyl derivatives were synthesized and investigated with regard to their photolytic performance upon UV irradiation. The systematic variation of the molecular structure resulted in different degradation rates depending on the irradiation conditions. Thus, the successive and independent cleavage is enabled by either adjusting the applied wavelengths or irradiation times. The respective molecules were used to build up photodegradable PMMA microgels by free radical copolymerization with MMA in a miniemulsion polymerization process. UV light-induced degradation of the swollen microgels was monitored by time dependent turbidity measurements and the resulting kinetics were found to correlate with the photolysis rates of the respective crosslinkers in solution. The irradiation wavelength-controlled selective partial cleavage of type B crosslinking points was achieved by UV irradiation with λ > 315 nm and resulted in particles with extensively increased volumes consisting of highly swollen networks. In addition, the irradiation time-controlled selective complete degradation of particles containing type B crosslinkers was accomplished. By using broadband UV light containing wavelengths of λ < 315 nm, the successive complete particle disintegration of type B and type A microgels was observed. Hence, the specific performance of the synthesized microgels can be precisely triggered by means of the used UV light wavelengths, doses and intensities, thus representing a great potential as new light-responsive nanoscaled materials.

Graphical abstract: Photo-sensitive PMMA microgels: light-triggered swelling and degradation

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2010
Accepted
05 Oct 2010
First published
09 Nov 2010

Soft Matter, 2011,7, 1426-1440

Photo-sensitive PMMA microgels: light-triggered swelling and degradation

D. Klinger and K. Landfester, Soft Matter, 2011, 7, 1426 DOI: 10.1039/C0SM00638F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements