Issue 21, 2014

Graphene oxide/polypyrrole composites for highly selective enrichment of U(vi) from aqueous solutions

Abstract

Graphene oxide/polypyrrole (GO/PPy) composites were synthesized via a dielectric barrier discharge (DBD) plasma technique in nitrogen conditions, and characterized by scanning electron microscopy (SEM), Raman spectroscopy, thermal gravimetric analysis (TGA), Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The sorption of U(VI) ions on GO/PPy composites from aqueous solutions was investigated as a function of contact time, pH, ionic strength and U(VI) initial concentrations. The sorption capacity of U(VI) on GO/PPy composites was much higher than those of U(VI) on GO, PPy and many other materials of today. The sorption of U(VI) on GO/PPy composites obeyed the Langmuir model, and was mainly attributed to surface complexation via the coordination of U(VI) ions with oxygen- and nitrogen-containing functional groups. The selectivity sorption of U(VI) ions on GO/PPy composites in the presence of other metal ions (i.e., Co(II), Ni(II), Cd(II), Sr(II), Zn(II)) indicated an overall preference for U(VI) ions. Moreover, the GO/PPy composites could be regenerated through the desorption of adsorbed U(VI) ions by using 1.0 M HCl solution, and cycling reused without an obvious decrease of sorption capacity. All these performances indicate that GO/PPy composites are suitable materials for the highly selective removal and preconcentration of U(VI) ions from aqueous solutions in environmental pollution management.

Graphical abstract: Graphene oxide/polypyrrole composites for highly selective enrichment of U(vi) from aqueous solutions

Article information

Article type
Paper
Submitted
27 May 2014
Accepted
06 Jul 2014
First published
07 Jul 2014

Polym. Chem., 2014,5, 6207-6215

Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions

R. Hu, D. Shao and X. Wang, Polym. Chem., 2014, 5, 6207 DOI: 10.1039/C4PY00743C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements