Jump to main content
Jump to site search

Issue 1, 2016
Previous Article Next Article

Fundamentals and applications of inertial microfluidics: a review

Author affiliations

Abstract

In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.

Graphical abstract: Fundamentals and applications of inertial microfluidics: a review

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Sep 2015, accepted on 03 Nov 2015 and first published on 03 Nov 2015


Article type: Critical Review
DOI: 10.1039/C5LC01159K
Citation: Lab Chip, 2016,16, 10-34
  •   Request permissions

    Fundamentals and applications of inertial microfluidics: a review

    J. Zhang, S. Yan, D. Yuan, G. Alici, N. Nguyen, M. Ebrahimi Warkiani and W. Li, Lab Chip, 2016, 16, 10
    DOI: 10.1039/C5LC01159K

Search articles by author

Spotlight

Advertisements