Issue 22, 2014

Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape

Abstract

The dependence of the Surface Enhanced Raman Scattering (SERS) by gold nanoparticles on their shape is examined using the organic dye, rhodamine 6G (R6G) as probe molecule. SERS has been explored extensively for applications in sensing and imaging, but the design and optimisation of efficient substrates is still challenging. In order to understand and optimise the SERS process in nanoparticles, gold nanospheres and their aggregates, nanotriangles, and nanostars of similar dimensions were synthesised and characterised according to their average size, zeta potential and UV/visible absorption. SERS from R6G was negligible for unaggregated nanospheres at 532 nm, close to the maximum of the surface plasmon resonance (SPR) at 560 nm. Upon aggregation of the nanospheres, the SPR shifts to ∼660 nm, attributable to local surface plasmon “hotspots” between the spheres, and the SERS signal of R6G is significantly increased, at 785 nm. In monodisperse gold nanotriangles, the SPR is located at ∼800 nm, and significant SERS of R6G is observed using 785 nm as source, as is the case for gold nanostars, which exhibit a double SPR with maxima at ∼600 nm and ∼785 nm, attributable to the core sphere and vertices of the structures, respectively. In suspensions of equal nanoparticle and dye concentration, the SERS effect increases as nanospheres < nanosphere aggregates < nanotriangles < nanostars, clearly indicating that control over the number of local field hotspots can optimise the SERS efficiency. Notably, it is demonstrated that the SERS intensity per nanoparticle scales with the magnitude of the SPR absorbance at the excitation wavelength (785 nm), providing a clear guide to optimisation of the process experimentally.

Graphical abstract: Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape

Article information

Article type
Paper
Submitted
09 Sep 2014
Accepted
06 Oct 2014
First published
07 Oct 2014

Anal. Methods, 2014,6, 9116-9123

Author version available

Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape

F. Tian, F. Bonnier, A. Casey, A. E. Shanahan and H. J. Byrne, Anal. Methods, 2014, 6, 9116 DOI: 10.1039/C4AY02112F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements