Issue 7, 2014

Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells

Abstract

The effects of mobile phone frequency electromagnetic field (RF-EMF, 940 MHz) on a stable cell line (HEK293T) harbouring the firefly luciferase gene were evaluated. A waveguide exposure system with 1 W input power provided the mean specific absorption rate of ≈0.09 W kg−1 in 35 mm Petri dishes. The effects of exposure duration (15, 30, 45, 60 and 90 min) on luciferase activity and oxidative response elements were investigated. Endogenous luciferase activity was reduced after 30 and 45 min of continuous exposure, while after 60 min, the exposed cell lysate showed higher luciferase activity compared with the non-exposed control. Reactive oxygen species (ROS) generation was highest in the 30 min exposed cells as studied by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The observed boost in ROS was then followed by a sharp rise in catalase (CAT) and superoxide dismutase (SOD) activity and elevation of glutathione (GSH) during the 45 min exposure. Decrease in lipid peroxidation (malondialdehyde, MDA) was meaningful for the 45 and 60 min exposed cells. Therefore, it appears that an increase in the activity of luciferase after 60 min of continuous exposure could be associated with a decrease in ROS level caused by activation of the oxidative response. This ability in cells to overcome oxidative stress and compensate the luciferase activity could also be responsible for the adaptive response mechanism detected in ionizing radiation studies with RF-EMF pre-treatments.

Graphical abstract: Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells

Article information

Article type
Paper
Submitted
31 Dec 2013
Accepted
15 Apr 2014
First published
16 Apr 2014

Photochem. Photobiol. Sci., 2014,13, 1082-1092

Author version available

Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells

Y. Sefidbakht, A. A. Moosavi-Movahedi, S. Hosseinkhani, F. Khodagholi, M. Torkzadeh-Mahani, F. Foolad and R. Faraji-Dana, Photochem. Photobiol. Sci., 2014, 13, 1082 DOI: 10.1039/C3PP50451D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements