Issue 23, 2024, Issue in Progress

Ni-based catalysts supported on Hbeta zeolite for the hydrocracking of waste polyolefins

Abstract

Polyolefin plastics are the most popular polymer materials worldwide, and the catalytic degradation of post-consumer polyolefins has attracted increased attention as a viable process. In this study, two types of Ni-based catalysts supported on Hbeta zeolite, Ni-Hbeta and NiS2-Hbeta, have been successfully synthesized for the hydrocracking of waste polyolefin. The experimental results indicated that the synergistic effect between Ni or NiS2 and the acidic sites of Hbeta zeolites can significantly enhance the tandem cracking and hydrogenation of polyolefin plastics, which suppresses the formation of gas products and coke. Ni-Hbeta employed as a catalyst can effectively degrade HDPE into high value liquid and gas products with high yield of 94% under 523 K and 3 MPa H2, while also exhibiting excellent cycle stability. In particular, Ni-Hbeta shows better catalytic performance than NiS2-Hbeta during the hydrocracking of HDPE at a relatively low temperature of 523 K. Furthermore, Ni-Hbeta catalyst also exhibits a remarkable capability for efficient depolymerization of unsorted post-consumer polyolefin plastics (HDPE, LDPE, PP) containing various additives and pollutants. These findings underscore the application potential of employing noble metal-free and recyclable catalysts for hydrocracking plastic waste, thereby facilitating the realization of a circular economy for plastics.

Graphical abstract: Ni-based catalysts supported on Hbeta zeolite for the hydrocracking of waste polyolefins

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2024
Accepted
09 May 2024
First published
16 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 15856-15861

Ni-based catalysts supported on Hbeta zeolite for the hydrocracking of waste polyolefins

G. Zhang, Q. Mao, Y. Yue, R. Gao, Y. Duan and H. Du, RSC Adv., 2024, 14, 15856 DOI: 10.1039/D4RA02809K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements