Issue 21, 2024, Issue in Progress

Synergistic effect of modified anhydrous magnesium carbonate and hexaphenoxycyclotriphosphazene on flame retardancy of ethylene-vinyl acetate copolymer

Abstract

Ethylene-vinyl acetate copolymer (EVA) is widely used in various applications; however, its flammability limits its application in wire and cable industries. In this study, 3-methacryloxypropyltrimethoxysilane (KH570) was successfully grafted onto the surface of anhydrous magnesium carbonate (AMC) by alkali activation treatment. The KH570 modified AMC (AMC@KH570) was then introduced into the EVA matrix along with hexaphenoxycyclotriphosphazene (HPCTP) to assess their effects on the flame retardancy and mechanical properties of EVA composites. The results illustrate a significant synergistic effect in enhancing the flame retardancy of EVA composites by using AMC@KH570 and HPCTP, and the limiting oxygen index (LOI) and vertical burning test (UL-94) of EVA filled with 5 wt% HPCTP and 45 wt% AMC@KH570 (mAMC/H-45-5) reached 27.6% and V-0, respectively. The flame retardant mechanism was investigated by thermogravimetric/infrared (TG-IR) spectroscopy and residual carbon composition analysis. The results show that the thermal decomposition of AMC@KH570 and HPCTP consists of gas dilution, free radical quenching, and catalytic carbonization. Furthermore, KH570 works as a bridge to improve the compatibility of AMC and EVA matrix, which offsets the mechanical loss of EVA to some extent. The present research provides a new path to modify AMC and fabricate EVA composites with excellent flame retardant properties.

Graphical abstract: Synergistic effect of modified anhydrous magnesium carbonate and hexaphenoxycyclotriphosphazene on flame retardancy of ethylene-vinyl acetate copolymer

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Mar 2024
Accepted
30 Apr 2024
First published
09 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 15143-15154

Synergistic effect of modified anhydrous magnesium carbonate and hexaphenoxycyclotriphosphazene on flame retardancy of ethylene-vinyl acetate copolymer

Y. Liu, S. Xu, Q. Chen, J. Xu and B. Sun, RSC Adv., 2024, 14, 15143 DOI: 10.1039/D4RA01669F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements