Issue 22, 2024

Preparation of carbon quantum dots and their application in the detection of vitamin B2

Abstract

A novel metal-doped carbon quantum dot, zinc-chlorine co-doped carbon quantum dots (Zn/Cl-CQDs), has been developed for the fluorescent probe detection of vitamin B2 and the analysis of the correlation properties of this carbon quantum dot and vitamin B2. Stability experiments demonstrate that Zn/Cl-CQDs possess good fluorescence properties under alkaline conditions. However, when vitamin B2 is added into Zn/Cl-CQDs, the fluorescence intensity decreases sharply, indicating that the fluorescence sensor shows rapid and sensitive detection of vitamin B2 under the static quenching. Lastly, the use of Zn/Cl-CQDs in the detection of vitamin B2 tablets and vitamin B2-rich fruits resulted in recovery rates of 98.2% and 100.6%, respectively. Therefore, this method can be well applied to the detection and analysis of vitamin B2, and has great development prospects in the pharmaceutical industry and food monitoring fields.

Graphical abstract: Preparation of carbon quantum dots and their application in the detection of vitamin B2

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Feb 2024
Accepted
04 May 2024
First published
13 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 15499-15506

Preparation of carbon quantum dots and their application in the detection of vitamin B2

L. Meng and H. Wu, RSC Adv., 2024, 14, 15499 DOI: 10.1039/D4RA01388C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements