Issue 20, 2024

Electrochemical sensing performance of two CuO nanomaterial-modified dual-working electrodes

Abstract

Two CuO nanostructures, namely, nanospheres (CuONSs) and nanochains (CuONCs) with different shapes but similar diameters, were synthesized and characterized. With these two nanomaterials as electrode modifiers, a systematic comparative study was conducted to examine their electrochemical sensing of catechol (CT) using a dual-working electrode system. The results suggest that for CuONS- and CuONC-modified glassy carbon electrodes, the electrode process for the CT redox is diffusion-controlled, and the modification amount and electrolyte pH have a similar effect on the response. However, the CuONCs showed a higher peak current and lower peak potential, as well as a lower detection limit for the electrochemical oxidation of CT. This is explained by the lower charge transfer impedance and higher electroactive surface area of the CuONCs. Notably, an unexpected peak appeared in the cyclic voltammograms when the pH was <4 for the CuONCs and <3 for the CuONSs. For this phenomenon, UV-Vis spectra, zeta potential, and size distribution experiments demonstrated changes in the two CuO nanostructures at lower pH, illustrating that CuONSs can tolerate a higher pH as compared to CuONCs. The multiple comparisons between the two nanomaterials presented here can provide references for the selection of electrochemical sensing materials.

Graphical abstract: Electrochemical sensing performance of two CuO nanomaterial-modified dual-working electrodes

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2024
Accepted
16 Apr 2024
First published
29 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 14194-14201

Electrochemical sensing performance of two CuO nanomaterial-modified dual-working electrodes

F. Chang, D. Wang, Z. Pu, J. Chen and J. Tan, RSC Adv., 2024, 14, 14194 DOI: 10.1039/D4RA01356E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements