Issue 19, 2024

2D nature of magnetic states at SnO2 surfaces: a combined experimental and theoretical study

Abstract

For undoped SnO2, room temperature ferromagnetism could be seen uniquely in 2-dimensional configurations, particularly in ultra-thin films (whose thickness is ideally below 100 nm). Both bulk samples and nano-powders of pristine SnO2 are diamagnetic, indicating that a 2D surface is a key point in shaping up the magnetic properties in SnO2. As a complement to our experiments, we have performed a series of quantum-mechanical calculations for the bulk rutile-structure SnO2 as well as its (001) and (101) surfaces. The calculations included several atomic configurations with and without vacancies in/under the studied surfaces. The stability of the non-magnetic ground state of rutile SnO2 bulk was cross-checked and confirmed by its phonon spectrum computed within the harmonic approximation. Regarding the surfaces, the bulk-like (001) surface containing Sn vacancies has turned out to be ferromagnetic, while the shift of Sn vacancies under the surface resulted in a more complex ferrimagnetic state. The bulk-like (001) surface without vacancies and that with the O vacancies are predicted to be non-magnetic. Regarding the (101) surfaces, those terminated by a single layer of oxygen atoms and those terminated by tin atoms are non-magnetic, while a surface terminated by two layers of oxygen has turned out to be ferromagnetic.

Graphical abstract: 2D nature of magnetic states at SnO2 surfaces: a combined experimental and theoretical study

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Jan 2024
Accepted
12 Apr 2024
First published
25 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 13583-13590

2D nature of magnetic states at SnO2 surfaces: a combined experimental and theoretical study

N. H. Hong, M. Friák, P. Pazourek, N. S. Pham, T. Q. Nhu, M. Kiaba, K. Gazdová and J. Pavlů, RSC Adv., 2024, 14, 13583 DOI: 10.1039/D4RA00734D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements