Issue 19, 2024

An efficient catalysis for the synthesis of pyrimido[1,2-a]benzimidazoles and 1-(benzothiazolylamino)methyl-2-naphthols using ZnO@SO3H@Tropine

Abstract

In this research and in the line of our researches on the use of nano-substrates modified with ionic liquid in organic reactions, an efficient and green method for the one-pot three-component synthesis of pyrimido[1,2-a]benzimidazole and 1-(benzothiazolylamino)methyl-2-naphthol derivatives is reported using a new nanoporous catalyst formulated as ZnO@SO3H@Tropine. Further analysis of the catalyst for its characterization has been performed using thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and Fourier-transform infrared spectroscopy (FT-IR). The present approach creates a variety of biologically active heterocyclic compounds with excellent yields and short reaction times. Among the other advantages of the current method are: ease of operation, clean reaction profiles and ease of separation. Also, this catalyst can be reused five times without loss of its catalytic activity.

Graphical abstract: An efficient catalysis for the synthesis of pyrimido[1,2-a]benzimidazoles and 1-(benzothiazolylamino)methyl-2-naphthols using ZnO@SO3H@Tropine

Supplementary files

Article information

Article type
Paper
Submitted
31 Dec 2023
Accepted
30 Mar 2024
First published
25 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 13452-13462

An efficient catalysis for the synthesis of pyrimido[1,2-a]benzimidazoles and 1-(benzothiazolylamino)methyl-2-naphthols using ZnO@SO3H@Tropine

F. Rahimizadeh, M. Mazloumi and F. Shirini, RSC Adv., 2024, 14, 13452 DOI: 10.1039/D3RA08960F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements