Issue 11, 2024

Magnetic-assisted preparation and performance control of Fe3O4/PVDF gradient magnetic composites

Abstract

In this study, a gradient Fe3O4/PVDF magnetic composite was prepared using magnetic-assisted template filling technology. The purpose of this study was to explore a simple, economical, and scalable method for preparing gradient magnetic composites. The structure and magnetic performance of the composite were studied, and the parameters that influenced the gradient magnetic properties of the material, such as magnetic intensity, magnet spacing, initial content of magnetic particles, and magnet movement speed, were investigated. The results showed that increasing magnetic intensity during the template filling process enhanced the electromagnetic force on the magnetic particles, resulting in a greater magnetic particle content gradient. The variation in magnet spacing affected the spatial magnetic field distribution, and increasing the magnet spacing increased the gradient of the magnetic intensity in the y-direction. The magnetic gradient of the Fe3O4/PVDF composite first decreased and then increased as the magnet spacing increased. Increasing the magnet movement speed enhanced the gradient of the magnetic intensity in the y-component but shortened the duration of the electromagnetic force. By adjusting these parameters, it is possible to regulate the structural and magnetic properties of the Fe3O4/PVDF composite. This work may have implications for research and application in related fields and promote the development and innovation of magnetic materials.

Graphical abstract: Magnetic-assisted preparation and performance control of Fe3O4/PVDF gradient magnetic composites

Supplementary files

Article information

Article type
Paper
Submitted
24 Dec 2023
Accepted
01 Mar 2024
First published
06 Mar 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 7891-7902

Magnetic-assisted preparation and performance control of Fe3O4/PVDF gradient magnetic composites

M. Wang and Z. Zhang, RSC Adv., 2024, 14, 7891 DOI: 10.1039/D3RA08804A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements