Issue 37, 2023

A porphyrin-based molecular cage guided by designed local-electric field is highly selective and efficient

Abstract

The present work outlines a general methodology for designing efficient catalytic machineries that can easily be tweaked to meet the demands of the target reactions. This work utilizes a principle of the designed local electric field (LEF) as the driver for an efficient catalyst. It is demonstrated that by tweaking the LEF, we can catalyze the desired hydroxylation products with enantioselectivity that can be changed at will. Using computation tools, we caged a synthetic analog of heme porphyrin (HM1) and investigated the pharmaceutically relevant conversion of tetralin to tetralol, inside the modified supramolecular cage. The QM/MM calculations demonstrate a resulting catalytic efficiency with virtually absolute R-selectivity for the tetralin hydroxylation. Our calculations show that the LEF of the supramolecular cage and HM1 exert a strong electric field along the Fe–O reaction axis, which is the main driving force for enhanced reactivity. At the same time, the supramolecular cage applies a lateral LEF that regulates the enantioselectivity. We further demonstrate that swapping the charged/polar substitution in the supramolecular cage switches the lateral LEF which changes the enantioselectivity of hydroxylation from R to S.

Graphical abstract: A porphyrin-based molecular cage guided by designed local-electric field is highly selective and efficient

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Apr 2023
Accepted
02 Sep 2023
First published
04 Sep 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2023,14, 10329-10339

A porphyrin-based molecular cage guided by designed local-electric field is highly selective and efficient

S. A. Siddiqui, S. Shaik, S. Kalita and K. D. Dubey, Chem. Sci., 2023, 14, 10329 DOI: 10.1039/D3SC01720F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements