Issue 49, 2023

Palladium-anchored donor-flexible pyridylidene amide (PYA) electrocatalysts for CO2 reduction

Abstract

The conversion of CO2 into CO as a substitute for processing fossil fuels to produce hydrocarbons is a sustainable, carbon neutral energy technology. However, the electrochemical reduction of CO2 into a synthesis gas (CO and H2) at a commercial scale requires an efficient electrocatalyst. In this perspective, a series of six new palladium complexes with the general formula [Pd(L)(Y)]Y, where L is a donor-flexible PYA, N2,N6-bis(1-ethylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, N2,N6-bis(1-butylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, or N2,N6-bis(1-benzylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, and Y = OAc or Cl, were utilized as active electrocatalysts for the conversion of CO2 into a synthesis gas. These palladium(II) pincer complexes were synthesized from their respective H-PYA proligands using 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) or sodium acetate as a base. All the compounds were successfully characterized by various physical methods of analysis, such as proton and carbon NMR, FTIR, CHN, and single-crystal XRD. The redox chemistry of palladium complexes toward carbon dioxide activation suggested an evident CO2 interaction with each Pd(II) catalyst. [Pd(N2,N6-bis(1-ethylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide)(Cl)]Cl showed the best electrocatalytic activity for CO2 reduction into a synthesis gas under the acidic condition of trifluoracetic acid (TFA) with a minimum overpotential of 0.40 V, a maximum turnover frequency (TOF) of 101 s−1, and 58% FE of CO. This pincer scaffold could be stereochemically tuned with the exploration of earth abundant first row transition metals for further improvements in the CO2 reduction chemistry.

Graphical abstract: Palladium-anchored donor-flexible pyridylidene amide (PYA) electrocatalysts for CO2 reduction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Sep 2023
Accepted
15 Nov 2023
First published
29 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 34817-34825

Palladium-anchored donor-flexible pyridylidene amide (PYA) electrocatalysts for CO2 reduction

A. Khurshid, T. Tanveer, K. Hafeez, M. Ahmed, Z. Akhtar and M. N. Zafar, RSC Adv., 2023, 13, 34817 DOI: 10.1039/D3RA06477H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements