Issue 46, 2021

Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials

Abstract

Copper-based catalysts are efficient for CO2 reduction affording commodity chemicals. However, Cu(I) active species are easily reduced to Cu(0) during the CO2RR, leading to a rapid decay of catalytic performance. Herein, we report a hybrid-catalyst that firmly anchors 2D-Cu metallic dots on F-doped CuxO nanoplates (CuxOF), synthesized by electrochemical-transformation under the same conditions as the targeted CO2RR. The as-prepared Cu/CuxOF hybrid showed unusual catalytic activity towards the CO2RR for CH3COO generation, with a high FE of 27% at extremely low potentials. The combined experimental and theoretical results show that nanoscale hybridization engenders an effective s,p-d coupling in Cu/CuxOF, raising the d-band center of Cu and thus enhancing electroactivity and selectivity for the acetate formation. This work highlights the use of electronic interactions to bias a hybrid catalyst towards a particular pathway, which is critical for tuning the activity and selectivity of copper-based catalysts for the CO2RR.

Graphical abstract: Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Oct 2021
Accepted
06 Nov 2021
First published
09 Nov 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 15382-15388

Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials

R. Cai, M. Sun, J. Ren, M. Ju, X. Long, B. Huang and S. Yang, Chem. Sci., 2021, 12, 15382 DOI: 10.1039/D1SC05441D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements