Issue 32, 2021, Issue in Progress

Predicting gas selectivity in organic ionic plastic crystals by free energy calculations

Abstract

Organic ionic plastic crystals (OIPCs) are molecularly disordered solids, and their potential for the development of gas separation membranes has recently been demonstrated. Here, the gas absorption capability of the OIPC, diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P122i4][PF6]), for four gases is predicted through potential of mean force (PMF) calculations based on two methods – average force method and adaptive biasing force method. Both methods correctly predicted the different trends of adsorption and absorption of these gases across the OIPC–gas interface. The distinct energy barriers of the PMF profiles of CO2 and N2 near the interface directly reflect the good selectivity of OIPC to these two gases. However, the selectivity of CH4 and O2 cannot be accurately reflected by the PMF curve near the interface, because the relative energy varies greatly at different positions inside the OIPC. Thus the average free energy change should be calculated over the entire OIPC box to evaluate the difference in selectivity between the two gases. This also suggests that gas absorption in OIPCs is greatly affected by the structural order and chemical environment. The adaptive biasing force method overall outperforms the average force method. The method should be able to provide a prediction of gas selectivity for a wider range of organic ionic plastic crystals and other solid materials.

Graphical abstract: Predicting gas selectivity in organic ionic plastic crystals by free energy calculations

Article information

Article type
Paper
Submitted
08 Mar 2021
Accepted
24 May 2021
First published
01 Jun 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 19623-19629

Predicting gas selectivity in organic ionic plastic crystals by free energy calculations

V. S. Kandagal, J. M. Pringle, M. Forsyth and F. Chen, RSC Adv., 2021, 11, 19623 DOI: 10.1039/D1RA01844B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements