Issue 35, 2021

Caged structural water molecules emit tunable brighter colors by topological excitation

Abstract

Intrinsically, free water molecules are a colourless liquid. If it is colourful, why and how does it emit the bright colours? We provided direct evidence that when water was trapped into the sub-nanospace of zeolites, the structural water molecules (SWs) exhibited strong tunable photoluminescence (PL) emissions from blue to red colours with unprecedented ultra-long lifetimes up to the second scale at liquid nitrogen temperature. Further controlled experiments and combined characterizations by time-resolved steady-state and ultra-fast femtosecond (fs) transient optical spectroscopy showed that the singly adsorbed hydrated hydroxide complex {OH·H2O} as SWs in the confined nanocavity is the true emitter centre, whose PL efficiency strongly depends on the type and stability of the SWs, which is dominated by H-bond interactions, such as the solvent effect, pH value and operating temperature. The emission of SWs exhibits the characteristic of topological excitations (TAs) due to the many-body quantum electron correlations in confined nanocavities, which differs from the local excitation of organic chromophores. Our model not only elucidates the origin of the PL of metal nanoclusters (NCs), but also provides a completely new insight to understand the nature of heterogeneous catalysis and interface bonding (or state) at the molecule level, beyond the metal-centred d band theory.

Graphical abstract: Caged structural water molecules emit tunable brighter colors by topological excitation

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2021
Accepted
29 Jul 2021
First published
30 Jul 2021

Nanoscale, 2021,13, 15058-15066

Caged structural water molecules emit tunable brighter colors by topological excitation

T. Yang, X. Hu, B. Shan, B. Peng, J. Zhou and K. Zhang, Nanoscale, 2021, 13, 15058 DOI: 10.1039/D1NR02389F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements