Issue 16, 2021

Curcumin-loaded high internal phase emulsions stabilized with lysine modified lignin: a biological agent with high photothermal protection and antibacterial properties

Abstract

Bacterial infections and multidrug resistance can seriously endanger the health and lives of humans, therefore the development of novel and efficient antibacterial strategies and drugs is urgently needed. Herein, a series of highly biocompatible lysine modified enzymatic hydrolysis lignins (EHL-Lys-x) were synthesized using the Mannich reaction. The sterilizing efficiency of EHL-Lys-2.0 against S. aureus and E. coli at 20 mg mL−1 is 93% and 50%, respectively, which is 26% higher than pure EHL. Quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) analysis showed that the adsorption and adhesive force between EHL-Lys-x and bacteria increase with the increased amount of grafting of Lys on EHL owing to the increase of the electrostatic interaction between the EHL-Lys-x and bacteria, which results in an improvement in the antimicrobial activity of EHL-Lys-x. Subsequently, EHL-Lys-x combined with alkyl polyglucoside (APG) was used to stabilize the high internal phase emulsion containing curcumin (HIPEs-cur). The dispersed phase fraction of HIPE-cur is 87 vol%, which is the highest internal phase reported to date in the medical research area. The highest residual levels of curcumin in HIPEs are 60-fold, 3-fold and 5-fold compared to that in bulk oil after treatment with UV radiation, thermal emittance and after storage, respectively. The minimum inhibitory concentrations of HIPEs-cur against S. aureus and E. coli were found to be 1.56 and 6.25 mg mL−1, respectively, which are far higher than that of pure EHL-Lys-x. This strategy not only increases the chemical stability and bioavailability of curcumin, but also provides a novel method for the application of lignin in biomedical science.

Graphical abstract: Curcumin-loaded high internal phase emulsions stabilized with lysine modified lignin: a biological agent with high photothermal protection and antibacterial properties

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2021
Accepted
02 Jun 2021
First published
15 Jun 2021

Food Funct., 2021,12, 7469-7479

Curcumin-loaded high internal phase emulsions stabilized with lysine modified lignin: a biological agent with high photothermal protection and antibacterial properties

K. Chen, S. Yuan, D. Wang, D. Qi, F. Chen and X. Qiu, Food Funct., 2021, 12, 7469 DOI: 10.1039/D1FO00128K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements