Issue 29, 2021

Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study

Abstract

The electrocatalytic hydrogen evolution reaction (HER) for water splitting is crucial for the sustainable production of clean hydrogen fuel, while the high cost of Pt catalysts impedes its commercialization. Herein, we have performed a systematic theoretical study on the electrocatalytic HER over single-atom catalysts (SACs) based on low-cost TiN. Specifically, the TiN(100) surface with a Ti or N vacancy has been considered as the support. 20 transition-metal (TM) atoms and 3 nonmetallic atoms are embedded into the Ti or N vacancy, accordingly denoted as M@Tiv or M@Nv. All the single atoms can be stabilized by the surface vacancies, controlled by the adjustable chemical potential. Interestingly, for TM-embedded TiN(100), the hydrogen binding is much stronger over M@Nv than M@Tiv, which can be attributed to the more localized d states of the TM atoms anchored by the N vacancies, indicating a strong coordination effect. Among 43 catalysts, 10 (Ni, Zn, Nb, Mo, Rh@Tiv, and Au, Pd, W, Mo, B@Nv) were predicted to have high HER catalytic activity with near-zero hydrogen adsorption free energy. For the further gaseous hydrogen evolution, Zn@Tiv can adopt both Tafel (with an energy barrier of 0.68 eV) and Heyrovsky mechanisms, while the others may prefer the Heyrovsky mechanism. This work provides a promising strategy to realize cost-efficient electrocatalysts for the HER, and highlights the important role of the local coordination environment for SACs.

Graphical abstract: Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2021
Accepted
21 Jun 2021
First published
22 Jun 2021

Phys. Chem. Chem. Phys., 2021,23, 15685-15692

Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study

B. He, J. Shen, B. Wang, Z. Lu and D. Ma, Phys. Chem. Chem. Phys., 2021, 23, 15685 DOI: 10.1039/D1CP01861B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements