Issue 31, 2021

New complexes of liquid crystal discotic triphenylenes: induction of the double gyroid phase

Abstract

Electron donor–acceptor liquid crystals have been attracting considerable attention due to possible applications in optoelectronics and photonics. The creation of such charge transfer complexes is a powerful and flexible instrument for modifying the structures and properties compared to those of the initial components. In the present work, such an approach is exemplified on new complexes formed via non-covalent interactions of triphenylene discotics, namely, 2,3,6,7,10,11-hexakis(pentyloxy) triphenylene (H5T) and 2-(acryloyloxypropyloxy)-3,6,7,10,11-pentapentylox-triphenylene (TPh-3A), with an electron acceptor, β-(2,4,7-trinitro-9-fluorenylideneaminooxy) propionic acid (TNF-carb). The structure of thin supported films of H5T, TPh-3A and their blends with TNF-carb was investigated by grazing-incidence wide-angle X-ray scattering using a synchrotron source. At room temperature, the pristine discotics crystallize in orthorhombic unit cells whereas the self-assembly of H5T and TPh-3A with TNF-carb results in a double gyroid and hexagonal phases, respectively. Formation of the double gyroid phase with the lattice parameter of 36.5 Å is driven by phase separation between the aromatic and alkyl regions of the system. It is supposed that the TNF-carb molecules of the complex are positioned in the nodes of the structure while the H5T molecules are located in the struts adjoining the nodes via triple junctions. For the hexagonal crystal of the TPh-3A/TNF-carb complex, the acceptor molecules are likely located in the interstices between the neighboring supramolecular columns of TPh-3A. The molecular structures of the blends were also explored by means of FTIR spectroscopy. A detailed FTIR spectra analysis illustrates fine changes in inter-molecular bonds. For example, the initially dimerized acceptor molecules totally disappear in the complex structures whereas in TPh-3A/TNF-carb additional H-bonds between the carboxylate group in TNF-carb and the ester group of TPh-3A form. The experimental data allows putting forward possible molecular models of the complex structures.

Graphical abstract: New complexes of liquid crystal discotic triphenylenes: induction of the double gyroid phase

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2021
Accepted
12 Jul 2021
First published
22 Jul 2021

Phys. Chem. Chem. Phys., 2021,23, 16827-16836

New complexes of liquid crystal discotic triphenylenes: induction of the double gyroid phase

O. A. Otmakhova, A. A. Piryazev, G. N. Bondarenko, G. A. Shandryuk, A. V. Maryasevskaya, A. S. Merekalov, D. A. Ivanov and R. V. Talroze, Phys. Chem. Chem. Phys., 2021, 23, 16827 DOI: 10.1039/D1CP00660F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements