Issue 24, 2020

A crosslinked conducting polymer with well-defined proton trap function for reversible proton cycling in aprotic environments

Abstract

In this paper, a well-defined proton trap material containing a hydroquinone unit flanked by two pyridine proton acceptors is presented. In combination with a terthiophene trimer, based on 3,4-ethylenedioxythiophene and 3,4-propylenedioxythiophene units, a conducting material with reversible redox properties is obtained. We apply post-deposition polymerization of the functionalized terthiophene trimer to provide a conducting polymer, which allows investigation of the electrochemical properties of the proton trap material. In situ studies concerning conductance measurements, mass uptake, electronic transitions and bonding vibrations indicate stable internal proton cycling between the hydroquinone and the pyridine functionality without affecting the conductivity or the doping process. The theoretical capacity of 42 mA h g−1, based on the pendant group redox conversion, can be achieved in a three electrode setup by potential step charging (25 s) at 0.5 V vs. Fc0/+ with subsequent discharging at 2C (0.5–0 V vs. Fc0/+). The total theoretical capacity available, including the contribution from the backbone, is 84 mA h g−1 and coin cell batteries with the conducting redox polymer as cathode material (without any additive) vs. lithium foil as anode showed a discharge capacity of 81 mA h g−1 (97% of the theoretical capacity) already from the first cycle (2.5–3.8 V vs. Li0/+ at 2C). The capacity was maintained during prolonged cycling and showed a capacity retention of 99% after 100 cycles and 98% after 200 cycles indicating high stability of this organic cathode material when applied in a battery configuration.

Graphical abstract: A crosslinked conducting polymer with well-defined proton trap function for reversible proton cycling in aprotic environments

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2020
Accepted
08 Jun 2020
First published
08 Jun 2020

J. Mater. Chem. A, 2020,8, 12114-12123

A crosslinked conducting polymer with well-defined proton trap function for reversible proton cycling in aprotic environments

L. Åkerlund, R. Emanuelsson, G. Hernández, M. Strømme and M. Sjödin, J. Mater. Chem. A, 2020, 8, 12114 DOI: 10.1039/D0TA03343J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements