Issue 19, 2020

Coalescence of isotropic droplets in overheated free standing smectic films

Abstract

A theoretical study of the interaction and coalescence of isotropic droplets in overheated free-standing smectic films (FSSF) is presented. Experimentally it is clear that merging of such droplets is extremely rare. On the basis of the general thermodynamic approach to the stability of FSSF, we determined the energy gains and losses involved in the coalescence process. The main contributions to the critical work of drop coalescence are due to the gain related to the decrease of the surface energy of the merging drops, which is opposed by the entropic repulsions of elementary steps at the smectic interface between them. To quantify the evolution of the merging drops, we use a simple geometrical model in which the volume of the smectic material, rearranged in the process of coalescence, is described by an asymmetrical pyramid at the intersection of two drops. In this way, the critical work for drop coalescence and the corresponding energy barrier have been calculated. The probability of the thermal activation of the coalescence process was found to be negligibly small, indicating that droplet merging can be initiated by only an external stimulus. The dynamics of drop merging was calculated by equating the capillary force driving the coalescence, and the Stokes viscous force slowing it down. For the latter, an approximation of moving oblate spheroids permitting exact calculations was used. The time evolution of the height of the neck between the coalescing drops and that of their lateral size are in good agreement with experiments.

Graphical abstract: Coalescence of isotropic droplets in overheated free standing smectic films

Article information

Article type
Paper
Submitted
20 Nov 2019
Accepted
15 Apr 2020
First published
04 May 2020

Soft Matter, 2020,16, 4591-4606

Coalescence of isotropic droplets in overheated free standing smectic films

E. S. Pikina, B. I. Ostrovskii and S. A. Pikin, Soft Matter, 2020, 16, 4591 DOI: 10.1039/C9SM02292A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements