Issue 21, 2020, Issue in Progress

Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are potentially harmful pollutants that are emitted into the environment from a range of sources largely due to incomplete combustion. The potential toxicity and carcinogenic effects of these compounds warrants the development of rapid and cost-effective methods for their detection. This work reports on the synthesis and use of graphene quantum dots (GQDs) as rapid fluorescence sensors for detecting PAHs in water. The GQDs were prepared from two sources, i.e. graphene oxide (GO) and citric acid (CA) – denoted GO-GQDs and CA-GQDs, respectively. Structural and optical properties of the GQDs were studied using TEM, Raman, and fluorescence and UV-vis spectroscopy. The GQDs were then applied for detection of pyrene in environmental water samples based on a “turn-off-on” mechanism where ferric ions were used for turn-off and pyrene for turn-on of fluorescence emission. The fluorescence intensity of both GQDs was switched on linearly within the 2–10 × 10−6 mol L−1 range and the limits of detection were found to be 0.325 × 10−6 mol L−1 and 0.242 × 10−6 mol L−1 for GO-GQDs and CA-GQDs, respectively. Finally, the potential application of the sensor for environmental water samples was investigated using lake water and satisfactory recoveries (97–107%) were obtained. The promising results from this work demonstrate the feasibility of pursuing cheaper and greener environmental monitoring techniques.

Graphical abstract: Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2019
Accepted
19 Mar 2020
First published
25 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 12119-12128

Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water

N. S. A. and F. P. B. C., RSC Adv., 2020, 10, 12119 DOI: 10.1039/C9RA10153E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements