Issue 8, 2020

Matrix-dependent absorption of 8-methoxypsoralen in extracorporeal photopheresis

Abstract

Background: Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy for various diseases. Autologous leukocytes are collected, photoactivated with a photosensitizer (8-methoxypsoralen, 8-MOP) and UVA light, and subsequently reinfused back to the patient. Leukapheresis and UVA irradiation systems can be integrated into one device (inline) or handled by two separate devices (offline). ECP works via intercalation of 8-MOP into DNA helices and UVA-based interactions to inhibit DNA replication. 8-MOP is known to adhere to plastic materials, which might reduce its availability for intercalation. In the present study we examined the bioavailability of 8-MOP when different plastic materials and solvents are used as matrices. Methods: Varying amounts of shredded ethylene vinyl acetate (EVA) and polyvinylchloride (PVC) from the MacoGenic irradiation bag (EVA1), UVA PIT irradiation bag (EVA2), UVA PIT recirculation bag (PVC A) and UVA PIT tubing (PVC B) by MacoPharma and PIT Medical Systems, respectively, were incubated with 200 ng mL−1 8-MOP dissolved in diisopropyl ether (DIPE) plus toluene 90/10 vol%, deionized water or plasma. After 2 h 8-MOP concentrations were determined by GC-MS. Results: After incubation, 8-MOP concentrations varied depending on the amount and type of plastic (PVC > EVA) and solvent (water > plasma > DIPE/toluene). Absorption to 200 mg EVA1 or EVA2 resulted in 8-MOP concentrations of 57% or 32% in water, 91% or 80% in plasma, and 93% or 92% in DIPE/toluene, while 200 mg PVC A and PVC B yielded recovery rates of 26% and 10% in water, 76% and 75% in plasma, and 55% and 30% in DIPE/toluene, respectively. Remaining 8-MOP differed significantly between container materials (EVA vs. PVC; p < 0.022) but not manufacturers (MacoPharma vs. PIT Medical Systems). Conclusion: Absorption loss of 8-MOP depends on the type of plastic and solvent and is more pronounced with water than with plasma. As the DNA binding effect of 8-MOP is dose-dependent, ECP starting doses should be adjusted to ensure that a sufficient concentration of free bioavailable 8-MOP is present during UV irradiation.

Graphical abstract: Matrix-dependent absorption of 8-methoxypsoralen in extracorporeal photopheresis

Article information

Article type
Technical Note
Submitted
13 Sep 2019
Accepted
08 Jan 2020
First published
08 Jul 2020
This article is Open Access
Creative Commons BY-NC license

Photochem. Photobiol. Sci., 2020,19, 1099-1103

Matrix-dependent absorption of 8-methoxypsoralen in extracorporeal photopheresis

V. Hähnel, I. Weber, S. Tuemmler, B. Graf, M. Gruber, R. Burkhardt and N. Ahrens, Photochem. Photobiol. Sci., 2020, 19, 1099 DOI: 10.1039/C9PP00378A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements