Exchange interactions in photoinduced magnetostructural states of copper(ii)–nitroxide spin dyads†
Abstract
Copper(II) complexes with stable nitroxide radicals are capable of magnetostructural spin-crossover like anomalies induced by external stimuli. Photoswitching in such systems is particularly important; however, retrieving the properties of photoinduced states is challenging and requires development of novel approaches. In this work, we investigate the exchange interactions in metastable photoinduced states of two compounds containing copper(II)–nitroxide dyads. Using Electron Paramagnetic Resonance (EPR) with photoexcitation we obtain temperature dependence of magnetic susceptibility in the photoinduced state and estimates for the corresponding values of exchange coupling in the studied complexes. The interplay between intra- and inter-cluster exchange couplings is considered and analyzed. The proposed methodology is applicable also to other photoswitchable exchange-coupled systems.