Issue 10, 2020

Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Pt alloy catalysts

Abstract

We employ a combined density functional theory (DFT) and experimental approach to screen different elements (M) and Pt3M alloys (M = Sc, Y, V, Nb, Ta, Ti, Zr, Hf, Cr, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Cu, Ag, Au and Al) for oxygen reduction reaction (ORR) activity and stability. The results of the calculations are validated using a series of carbon supported alloy nanoparticles measured within membrane electrode assembly (MEA) environments. We assess the reliability of descriptors such as surface d-band centre and O adsorption energy as computed from DFT calculations. We also assess the stability of the alloy surfaces under different adsorbate environments as encountered under ORR conditions. Our calculations predict that under an oxygen atmosphere segregation of M to the surface is likely to occur. The calculated segregation energies correlate reasonably well with the amount of base metal leached in the carbon-supported catalysts and good correlation of computed O adsorption energies with ORR activity is also shown.

Graphical abstract: Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Pt alloy catalysts

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2020
Accepted
21 Feb 2020
First published
21 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 5902-5914

Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Pt alloy catalysts

M. Sarwar, J. L. Gavartin, A. Martinez Bonastre, S. Garcia Lopez, D. Thompsett, S. C. Ball, A. Krzystala, G. Goldbeck and S. A. French, Phys. Chem. Chem. Phys., 2020, 22, 5902 DOI: 10.1039/D0CP00301H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements