Issue 53, 2020

Materials chemistry of triplet dynamic nuclear polarization

Abstract

Dynamic nuclear polarization with photo-excited triplet electrons (triplet-DNP) has the potential to enhance the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at a moderate temperature. While many efforts have been devoted to achieving a large nuclear polarization based on triplet-DNP, the application of triplet-DNP has been limited to nuclear physics experiments. The recent introduction of materials chemistry into the field of triplet-DNP has achieved air-stable and water-soluble polarizing agents as well as the hyperpolarization of nanomaterials with a large surface area such as nanoporous metal–organic frameworks (MOFs) and nanocrystal dispersion in water. This Feature Article overviews the recently-emerged materials chemistry of triplet-DNP that paves new paths towards unprecedented biological and medical applications.

Graphical abstract: Materials chemistry of triplet dynamic nuclear polarization

Article information

Article type
Feature Article
Submitted
27 Mar 2020
Accepted
01 May 2020
First published
01 May 2020

Chem. Commun., 2020,56, 7217-7232

Author version available

Materials chemistry of triplet dynamic nuclear polarization

K. Nishimura, H. Kouno, Y. Kawashima, K. Orihashi, S. Fujiwara, K. Tateishi, T. Uesaka, N. Kimizuka and N. Yanai, Chem. Commun., 2020, 56, 7217 DOI: 10.1039/D0CC02258F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements