Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy
Abstract
Organo-seleno compounds (org-Se) have been widely used in antitumor, antiviral, and antiinflammatory therapy; antioxidation and other biological fields. As such, they have made an important contribution to overcoming various kinds of diseases, and researchers are increasingly attracted to org-Se's synthesis and functional design. This review is mainly focused on the design and synthesis of various kinds of org-Se, followed by their anticancer mechanisms such as the mitochondria mediated pathway induced by ROS, death receptor mediated pathways involving p53 phosphorylation, and the activation of the AMPK pathway to promote apoptosis. Org-Se also serves as a sensitizer in chemotherapy and radiotherapy, and an antagonist against the cytotoxic effects induced by chemotherapeutic agents. Finally, we will summarize the development of cancer-targeted org-Se containing complexes, and nanotechnology-based org-Se for anticancer application. This review could provide information for the future design of chemically innovative org-Se with anticancer potential, and shed light on the discovery of nanomaterial-based pharmaceuticals to improve drug development and formation.