Issue 9, 2019

ITO@SiO2 and ITO@{M6Br12}@SiO2 (M = Nb, Ta) nanocomposite films for ultraviolet-near infrared shielding

Abstract

Transparent optical thin films for energy saving applications have recently gained substantial prominence for functional window processes. In this study, highly visible transparent nanocomposite films with ultraviolet (UV) and near-infrared (NIR) blocking capabilities are reported. Such nanocomposite films, prepared by electrophoretic deposition on ITO-coated glass, are composed of indium tin oxide (ITO) nanocrystals (9 nm) and octahedral metal atom clusters (1 nm, Nb6 or Ta6) embedded into silica nanoparticles (∼80 nm). The functional silica nanoparticles were prepared by a reverse microemulsion process. The microstructural characterization proved that ITO nanocrystals are centered in the silica nanoparticles, whereas the metal atom clusters are homogeneously distributed in the silica matrix. The optical absorption spectra of these transparent nanocomposite films exhibit distinct and complementary contributions from their ITO nanoparticles and metal atom clusters (absorption in the UV range) and from the ITO layer on silica.

Graphical abstract: ITO@SiO2 and ITO@{M6Br12}@SiO2 (M = Nb, Ta) nanocomposite films for ultraviolet-near infrared shielding

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2019
Accepted
05 Aug 2019
First published
07 Aug 2019
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2019,1, 3693-3698

ITO@SiO2 and ITO@{M6Br12}@SiO2 (M = Nb, Ta) nanocomposite films for ultraviolet-near infrared shielding

W. Chen, T. K. N. Nguyen, M. Wilmet, N. Dumait, O. Makrygenni, Y. Matsui, T. Takei, S. Cordier, N. Ohashi, T. Uchikoshi and F. Grasset, Nanoscale Adv., 2019, 1, 3693 DOI: 10.1039/C9NA00400A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements