Issue 35, 2019

Anion and solvent dependency of the electronic coupling strength in mixed valent class II systems

Abstract

The influence of the coordination and ion pairing properties of electrolyte anions on electronic coupling in cationic class II mixed valent species was studied. In order to cover a range of electronic coupling strengths within the class II regime, weakly coupled 2,5-diferrocenyl-3,4-thiadiazol, moderately coupled 2,5-diferrocenyl thiophene and strongly coupled N-(4-dimethylaminophenyl)-2,5-diferrocenyl-1H-pyrrole were chosen as analytes. The electrochemical properties of these compounds were determined by cyclic and square wave voltammetry using electrolytes with varying ion pairing capabilities, such as [NBu4][Cl], [NBu4][PF6] and [NBu4][BArF] ([NBu4][B(C6F5)4]), as well as solvents with increasing dielectric constants (dichloromethane (εr = 8.93), acetone (εr = 20.56), acetonitrile (εr = 35.94) and propylene carbonate (εr = 64.92)). It is shown that the choice of electrolyte has a considerable impact on the electrostatic and the electron transfer features of the mixed valent compounds when solvents of low polarity and low relative permittivity such as dichloromethane are used. For the use of more polar solvents such as propylene carbonate the electrochemical and spectroscopic properties are almost electrolyte independent. The solvatochromic and ion-related changes in the spectroscopic properties are most pronounced for weakly coupled systems and decrease with an increase in the electron transfer coupling strength.

Graphical abstract: Anion and solvent dependency of the electronic coupling strength in mixed valent class II systems

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2019
Accepted
15 Aug 2019
First published
16 Aug 2019

Dalton Trans., 2019,48, 13162-13168

Anion and solvent dependency of the electronic coupling strength in mixed valent class II systems

A. Hildebrandt, D. Miesel, Q. Yuan, J. Freytag, J. Mahrholdt and H. Lang, Dalton Trans., 2019, 48, 13162 DOI: 10.1039/C9DT03121A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements