Regulation of magnetic relaxation behavior by replacing 3d transition metal ions in [M2Dy2] complexes containing two different organic chelating ligands†
Abstract
Four tetranuclear 3d–4f complexes, namely [Fe2Ln2(L)2(teaH)2(Cl)2](NO3)2·4CH3CN (H2L = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine, teaH3 = triethanolamine, Ln = Dy for 1 and Ln = Gd for 1′) and [Co2Ln2(L)2(pdm)2(CH3COO)2(CH3OH)2](NO3)2·xCH3OH·yH2O (pdmH2 = 2,6-pyridinedimethanol, Ln = Dy, x = 5 and y = 2.5 for 2 and Ln = Gd, x = 6 and y = 1.5 for 2′), have been reported. Two FeIII and two DyIII in 1 formed a zigzag Fe1–Dy1–Dy1a–Fe1a arrangement with a Fe1–Dy1–Dy1a angle of 105.328(3)°. However, in contrast to 1, two CoIII and two DyIII ions in 2 formed a more linear Co1–Dy1–Dy1a–Co1a arrangement with a Co1–Dy1–Dy1a angle of 141.86(2)°. Additionally, two DyIII ions in 1 are eight-coordinated with a triangular dodecahedron geometry, while two DyIII ions in 2 adopt nine-coordination with a muffin geometry. Magnetic studies revealed slow magnetic relaxation behavior for 1, with an energy barrier Ea of 6.9 K. For 2, single molecule magnet behavior was presented under a zero dc field with an effective energy barrier Ueff of 64.0(9) K. Ab initio calculations for 1 and 2 indicate that compared to 2, complex 1 has a larger transversal magnetic moment of its ground Kramers doublets (KD) and a larger value of the tunnelling parameter (Δt) for the exchanged coupled ground state, which may result in poor single molecule magnet behavior for 1.

Please wait while we load your content...