Issue 2, 2019

Insight into the factors influencing NMR parameters in crystalline materials from the KF–YF3 binary system

Abstract

Solid state NMR signals are very sensitive to the local environment of the observed nucleus; however, their interpretation is not straightforward. On the other hand, first-principles DFT calculations of NMR parameters can now be applied to periodic compounds to predict NMR parameters. Thus, ab initio calculations can help to interpret the NMR spectra exhibited by complex materials, to assign NMR lines to structural environments, and even to enlighten the environmental factors influencing the NMR parameters for a given nucleus. Both techniques have been applied to crystalline compounds of the KF–YF3 binary system, γ-K3YF6, K2YF5, KYF4, β-KY2F7 and α-KY3F10, which present a variety of YFn and KFm polyhedra. First, the structure of K2YF5 was refined in the Pnma space group and, for all compounds, atomic positions were optimized by DFT. The 19F, 89Y and 39K NMR spectra have been recorded and the measured NMR parameters are compared to those calculated from the first-principles DFT method, allowing unambiguous assignments of NMR lines to crystallographic sites. Linear correlations between the experimental δiso and calculated σiso values for the three nuclei are used to predict the theoretical 19F spectra of KYF4 (24 F sites) and β-KY2F7 (19 F sites) as well as the 39K spectrum of KYF4 (6 K sites). For 89Y and 39K, both computational and experimental results show a decrease of the isotropic chemical shift values when the cation coordination number increases. Above all, 89Y isotropic chemical shift values correlate with the number of K atoms present in the Y second coordination sphere. For 19F, the combination of isotropic chemical shift and chemical shift anisotropy allows for distinguishing four kinds of F environments.

Graphical abstract: Insight into the factors influencing NMR parameters in crystalline materials from the KF–YF3 binary system

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2018
Accepted
25 Nov 2018
First published
27 Nov 2018

Dalton Trans., 2019,48, 587-601

Insight into the factors influencing NMR parameters in crystalline materials from the KF–YF3 binary system

J. Dabachi, M. Body, J. Dittmer, A. Rakhmatullin, F. Fayon and C. Legein, Dalton Trans., 2019, 48, 587 DOI: 10.1039/C8DT03241F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements