Issue 20, 2019

Ferroelectric field manipulated nonvolatile resistance switching in Al:ZnO/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures at room temperature

Abstract

Resistance switching was obtained in Al:ZnO/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures at room temperature by applying an external electric field. The modulation of the resistance is more pronounced in the thinner samples, indicating that it is an interfacial effect. In addition, the resistance of Al:ZnO films is significantly reduced by the photoexcited carriers when illumination is applied. The results indicate that the carrier density in the Al:ZnO films is modulated under external electric fields, due to the accumulation and depletion of charge at the interface between Al:ZnO and Pb(Mg1/3Nb2/3)0.7Ti0.3O3. Hence, reversible and nonvolatile resistance states can be achieved by the ferroelectric field effect, and it is expected that multilevel storage will be realized.

Graphical abstract: Ferroelectric field manipulated nonvolatile resistance switching in Al:ZnO/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures at room temperature

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2019
Accepted
03 May 2019
First published
03 May 2019

Phys. Chem. Chem. Phys., 2019,21, 10784-10790

Ferroelectric field manipulated nonvolatile resistance switching in Al:ZnO/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures at room temperature

S. Liu, C. Jin, D. Zheng, X. Pang, Y. Wang, P. Wang, W. Zheng and H. Bai, Phys. Chem. Chem. Phys., 2019, 21, 10784 DOI: 10.1039/C9CP01809C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements