Jump to main content
Jump to site search

Issue 17, 2018
Previous Article Next Article

Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation

Author affiliations

Abstract

The direct formic acid fuel cell (DFAFC) has received increasing attention in the sustainable and clean energy field. However, the high cost, poor durability, and shortage of palladium (Pd) based catalysts for the formic acid oxidation reaction (FAOR) restrict the large-scale application of DFAFC. Herein, molybdenum nitride/reduced graphene oxide (Mo2N/rGO) was designed as an effective cocatalyst of Pd for FAOR based on an assembly-immobilization method. It is shown that the small-sized Mo2N is well dispersed on rGO with high density, which is favorable for the post-loading deposition of Pd onto the rGO to form a strongly coupled Pd–Mo2N structure. The strong interaction between Pd and Mo2N, verified by a series of characterizations, is helpful for promoting the performance of Pd. Electrochemical tests indicate that the Pd–Mo2N/rGO catalyst shows superior activity to other Pd based catalysts, with a current density of 532.7 mA mgPd−1, which is 1.7 and 2.2 times greater than those of Pd/reduced graphene oxide (Pd/rGO) and Pd/Vulcan XC-72 (Pd/VC), respectively. In addition, Pd–Mo2N/rGO exhibits enhanced CO tolerance and good stability. The good performance is mainly ascribed to the intimate contact between Mo2N and Pd which gives enhanced synergistic action. The excellent performance of Pd–Mo2N/rGO makes it a potential electrocatalyst for DFAFC applications.

Graphical abstract: Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Mar 2018, accepted on 27 Mar 2018 and first published on 29 Mar 2018


Article type: Paper
DOI: 10.1039/C8TA02488J
Citation: J. Mater. Chem. A, 2018,6, 7623-7630
  •   Request permissions

    Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation

    H. Yan, Y. Jiao, A. Wu, C. Tian, L. Wang, X. Zhang and H. Fu, J. Mater. Chem. A, 2018, 6, 7623
    DOI: 10.1039/C8TA02488J

Search articles by author

Spotlight

Advertisements