Issue 17, 2018

Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction

Abstract

The synthesis of 8 metal–Sn (metal = Mn, Co, Ni, Cu, Zn, Ag, Cd, and Pb) bimetallic materials by electrochemical reduction of their metal stannates is reported. When the metal–Sn bimetallic materials were used as electrocatalysts for electrochemical CO2 reduction, bulk electrolysis results revealed that the Ag–Sn and Cu–Sn bimetallic systems showed the highest activity and selectivity for formate. When incorporated with reduced graphene oxide (rGO), their electrocatalytic performance can be further improved, making them among the best performing tin based CO2 reduction electrocatalysts reported so far. The Ag–Sn/rGO catalyst reaches the highest faradaic efficiency for formate (FEformate) of 88.3% at −0.94 V vs. RHE with a current density of 21.3 mA cm−2 in a 0.5 M aqueous NaHCO3 solution. Comparable performance was observed from the Cu–Sn/rGO catalyst, where the highest FEformate of 87.4% and a current density of 23.6 mA cm−2 were obtained at −0.99 V vs. RHE. Both catalysts exhibited high stability over a 6 hour electrolysis period with the FEformate variation being less than 2%. The excellent performance of this class of bimetallic nanoparticle/rGO composite catalysts is attributed to the small size of the stannate derived bimetallic nanoparticles, the presence of a SnOx layer and the introduction of rGO which prevents the aggregation of the bimetallic nanoparticles and provides a 3D conductive network to facilitate fast charge transfer. This study demonstrates a facile yet general strategy that enables the synthesis of bimetallic systems for highly efficient electrocatalytic CO2 reduction.

Graphical abstract: Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2018
Accepted
26 Mar 2018
First published
26 Mar 2018

J. Mater. Chem. A, 2018,6, 7851-7858

Author version available

Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction

X. Zhang, F. Li, Y. Zhang, Alan M. Bond and J. Zhang, J. Mater. Chem. A, 2018, 6, 7851 DOI: 10.1039/C8TA02429D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements