Jump to main content
Jump to site search


Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO2/CH4 separation

Author affiliations

Abstract

All-silica CHA nanocrystals, much smaller (20–200 nm) than previously reported, were prepared by an improved method developed in the present work. The nanocrystals are prepared by adding milled crystals to a fluoride synthesis mixture and we observed that much smaller crystals are obtained by adding a much higher fraction of milled crystals. In the next step, CHA membranes with a thickness of ca. 1.3 μm were prepared by hydrothermal treatment of a monolayer of nanocrystals supported on porous graded alumina discs in a fluoride synthesis gel. Finally, the membranes were calcined at 480 °C. The highest measured single gas CO2 permeance was 172 × 10−7 mol m−2 s−1 Pa−1 at room temperature. The highly permeable membranes were evaluated for separation of CO2 from an equimolar mixture with CH4 at varying temperatures. The highest observed CO2 mixture permeance was 84 × 10−7 mol m−2 s−1 Pa−1 at 276 K with a separation selectivity of 47 at 9 bar feed pressure and atmospheric permeate pressure. At room temperature, the CO2 mixture permeance was also as high as 78 × 10−7 mol m−2 s−1 Pa−1 with a separation selectivity of 32. To the best of our knowledge, these CO2 permeances are by far the highest reported for CHA membranes, while the selectivity is similar to that reported previously at comparable test conditions.

Graphical abstract: Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO2/CH4 separation

Back to tab navigation

Publication details

The article was received on 05 Feb 2018, accepted on 26 Mar 2018 and first published on 28 Mar 2018


Article type: Paper
DOI: 10.1039/C8TA01240G
Citation: J. Mater. Chem. A, 2018, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO2/CH4 separation

    L. Yu, A. Holmgren, M. Zhou and J. Hedlund, J. Mater. Chem. A, 2018, Advance Article , DOI: 10.1039/C8TA01240G

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements