Biomimetic scale-resistant polymer nanocomposites: towards universal additive-free scale inhibition†
Abstract
Macromolecular additives have long been used as the gold standard for inorganic scale inhibition in water-based industries. Despite their noticeable success in regulating the precipitation of sparingly soluble salts, environmental footprints such as eutrophication and acidification associated with anionic P, N, and S functionalized macromolecules have raised significant concerns, demanding green alternatives. Here, we show that incorporating a newly emerged nanoengineered cellulose, named anionic hairy cellulose nanocrystals (AHCNs, also known as electrosterically stabilized nanocrystalline cellulose, ENCC), into polymer matrices, e.g., cellulose acetate, a model system for water treatment membranes, mitigates the scaling of calcium carbonate, increasing the membrane lifetime up to a factor of 300% under harsh electrochemical conditions at only 0.4 wt% nanocellulose doping in the membrane casting solution. This may help establish the foundations for additive-free scale management based on plant-derived green, sustainable nanomaterials.