Jump to main content
Jump to site search

Issue 16, 2018
Previous Article Next Article

O-Vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance

Author affiliations

Abstract

To enhance the capacitive property of NiO-based electrodes, O-vacancy-enriched NiO hexagonal platelets have been fabricated in situ on an Ni foam current collector by a facile hydrothermal treatment of Ni foam in a H2O2 aqueous solution and subsequent calcination in N2 atmosphere. Due to the self-grown nature and the abundant oxygen vacancies, the as-prepared self-supported NiO electrode showed extraordinary pseudocapacitance. The specific capacitance of the as-prepared NiO electroactive materials was 2495 F g−1 at a scan rate of 1 mV s−1 (∼97% of the theoretical value of NiO) and the capacitance retention was higher than 80% when the current density increased from 0.5 to 10 A g−1. DFT computational studies proved the vital role of oxygen vacancies in increasing the conductivity, electrochemical active sites and surface reactivity, which substantially account for the significantly high specific capacitance and rate capability. This study may further broaden the applications of NiO-based materials and boost the research on oxygen nonstoichiometry.

Graphical abstract: O-Vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 Jan 2018, accepted on 20 Mar 2018 and first published on 21 Mar 2018


Article type: Paper
DOI: 10.1039/C8TA00044A
Citation: J. Mater. Chem. A, 2018,6, 7099-7106
  •   Request permissions

    O-Vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance

    L. Li, J. Zhang, J. Lei, J. Xu, B. Shang, L. Liu, N. Li and F. Pan, J. Mater. Chem. A, 2018, 6, 7099
    DOI: 10.1039/C8TA00044A

Search articles by author

Spotlight

Advertisements