Jump to main content
Jump to site search

Issue 8, 2018
Previous Article Next Article

Monolayer InP3 as a reversible anode material for ultrafast charging lithium- and sodium-ion batteries: a theoretical study

Author affiliations

Abstract

Improving the battery capacity usually induces a large volume expansion of the electrode, leading to poor reversibility and safety of the battery. Therefore, high specific capacity, fast charging rate, and good reversibility should be balanced in electrode materials. Using first-principles calculations, we systematically explore the InP3 monolayer as an anode material to hold Li (Na) atoms. The adsorption of Li (Na) induces the transformation of the sp2 hybridization of In to the sp3 hybridization, implying a strong binding and fast loading of Li (Na). Furthermore, the alkali-metal–InP3 system shows metallic characteristics which give rise to good electrical conductivity. In addition, Li (Na) diffusion in the zigzag direction is faster than that along the armchair direction. Especially, the Na diffusion barrier along the zigzag direction is as low as 0.06 eV, corresponding to ultrafast charge/discharge capability. Balancing the stability and storage capacity, the specific capacity and average electrode potential of Li (Na) are 258.1 (258.1) mA h g−1 and 0.53 (1.49) V, respectively. Finally, the structure of InP3 is well maintained upon the adsorption of Li (Na) even at the maximum concentration, suggesting its good stability and reversibility. The above-mentioned excellent properties suggest that the InP3 monolayer is a promising anode material for alkali-metal batteries.

Graphical abstract: Monolayer InP3 as a reversible anode material for ultrafast charging lithium- and sodium-ion batteries: a theoretical study

Back to tab navigation

Publication details

The article was received on 21 Nov 2017, accepted on 19 Jan 2018 and first published on 19 Jan 2018


Article type: Paper
DOI: 10.1039/C7TA10248H
Citation: J. Mater. Chem. A, 2018,6, 3634-3641
  •   Request permissions

    Monolayer InP3 as a reversible anode material for ultrafast charging lithium- and sodium-ion batteries: a theoretical study

    J. Liu, C. Liu, X. Ye and X. Yan, J. Mater. Chem. A, 2018, 6, 3634
    DOI: 10.1039/C7TA10248H

Search articles by author

Spotlight

Advertisements