Jump to main content
Jump to site search

Issue 3, 2018
Previous Article Next Article

Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks

Author affiliations

Abstract

Interpenetration in metal–organic frameworks (MOFs), where multiple nets of metal ions or clusters linked by organic ligands are nested within each other's pore spaces, affects important physical properties such as stability and gas uptake, and can be controlled through ligand sterics and modifying synthetic conditions. Herein, we extend the use of coordination modulation – deliberate addition of competing monotopic ligands to syntheses – to prepare Sc MOFs containing related biphenyl-4,4′-dicarboxylate (bpdc) and 2,2′-bipyridine-5,5′-dicarboxylate (bpydc) linkers. The Sc-bpdc MOF adopts a two-fold interpenetrated structure, however, the Sc-bpydc MOF is non-interpenetrated, despite only minor electronic modifications to the ligand. A comprehensive experimental and theoretical examination reveals that ligand twisting (energetically favourable for bpdc but not bpydc) and associated π-stacking interactions are a prerequisite for interpenetration. The more rigid Sc-bpdc is susceptible to modulation, resulting in differences in morphology, thermal stability and the synthesis of a highly defective, acetate-capped mesoporous material, while the large pore volume of Sc-bpydc allows postsynthetic metallation with CuCl2 in a single-crystal to single-crystal manner. Controlling interpenetration through linker conformation could result in design of new materials with desirable properties such as bifunctional solid-state catalysts.

Graphical abstract: Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Nov 2017, accepted on 14 Dec 2017 and first published on 15 Dec 2017


Article type: Paper
DOI: 10.1039/C7TA09699B
Citation: J. Mater. Chem. A, 2018,6, 1181-1187
  • Open access: Creative Commons BY license
  •   Request permissions

    Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks

    R. J. Marshall, C. T. Lennon, A. Tao, H. M. Senn, C. Wilson, D. Fairen-Jimenez and R. S. Forgan, J. Mater. Chem. A, 2018, 6, 1181
    DOI: 10.1039/C7TA09699B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements