Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Tuesday 6th February 2018 from 11.00am to 11.15am (GMT).

During this time our website performance may be temporarily affected. If you have any questions please use the feedback button available under our menu button. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 4, 2018
Previous Article Next Article

Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution

Author affiliations

Abstract

Cation disorder which arises from the size and chemical environment similarity of Cu and Zn is the limiting factor in Cu2ZnSnSxSe4−x (CZTSSe) performance. Cation substitution is one effective way to solve this issue, however, the most commonly reported substitutes, Ag and Cd, are not ideal as they detract from the earth-abundant and non-toxic motivation of CZTSSe. Mn is a promising candidate in comparison with other candidates (e.g. Fe, Ni or Co), because of its oxidation state stability and larger ionic size mismatch with Cu. In this study, Cu2MnxZn1−xSn(S,Se)4 (CMZTSSe) thin film solar cells were prepared by chemical spray pyrolysis and a subsequent selenization process. We study the influence of Mn substitution on the morphological, structural, optical, electrical and device properties. A distinct phase transformation from CZTSSe kesterite to C(M,Z)TSSe stannite is observed at 20% Mn substitution. A high amount of Mn substitution (x ≥ 0.6) is shown to increase the carrier density significantly which introduces more defects and non-radiative carrier recombination as shown by quenched photoluminescence intensity. Consequently, reduction in device performance is observed for these samples. The highest power conversion efficiency is achieved at x ≈ 0.05 with η = 7.59%, Voc = 0.43 V, Jsc = 28.9 mA cm−2 and FF = 61.03%. The improved open circuit voltage (Voc) and fill factor (FF) are attributed to the improved shunt resistance and carrier transport due to low defect density especially at the CdS/CMZTSSe interface. Finally, based on our electrical characterization, a few suggestions to improve the efficiency are proposed.

Graphical abstract: Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 Nov 2017, accepted on 04 Dec 2017 and first published on 11 Dec 2017


Article type: Paper
DOI: 10.1039/C7TA09668B
Citation: J. Mater. Chem. A, 2018,6, 1540-1550
  •   Request permissions

    Reducing the interfacial defect density of CZTSSe solar cells by Mn substitution

    S. Lie, J. M. Rui Tan, W. Li, S. W. Leow, Y. F. Tay, D. M. Bishop, O. Gunawan and L. H. Wong, J. Mater. Chem. A, 2018, 6, 1540
    DOI: 10.1039/C7TA09668B

Search articles by author

Spotlight

Advertisements