Jump to main content
Jump to site search

Issue 2, 2018
Previous Article Next Article

A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

Author affiliations

Abstract

In the present work we used some crystallization trends which could be classified as a Crystal Engineering (CE) approach, for deposition of a pure cubic-phase thin film of CH3NH3PbI3 (MAPbI3) on the surface of a mesoporous TiO2 layer. Accordingly, by using the CE approach, we fabricated high efficiency perovskite solar cells (PSCs) and perovskite solar modules (PSMs) utilizing several Hole Transport Layers (HTLs). We optimized the sequential deposition method, developing the entire realization procedure in air. The results show that the CE approach remarkably improved the device performance reaching a power conversion efficiency of 17%, 16.8% and 7% for spiro-OMeTAD, P3HT and HTL free (direct contact of the perovskite layer with the gold layer) PSCs, respectively. Furthermore, perovskite solar modules (active area of 10.1 cm2), which are fabricated by the CE approach, could reach an overall efficiency of 13% and 12.1% by using spiro-OMeTAD and P3HT as HTLs, respectively. The sealed modules showed promising results in terms of stability maintaining 70% of the initial efficiency after 350 hours of light soaking at the maximum power point.

Graphical abstract: A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 Sep 2017, accepted on 28 Nov 2017 and first published on 28 Nov 2017


Article type: Paper
DOI: 10.1039/C7TA08038G
Citation: J. Mater. Chem. A, 2018,6, 659-671
  •   Request permissions

    A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

    N. Yaghoobi Nia, M. Zendehdel, L. Cinà, F. Matteocci and A. Di Carlo, J. Mater. Chem. A, 2018, 6, 659
    DOI: 10.1039/C7TA08038G

Search articles by author

Spotlight

Advertisements