Issue 17, 2018

Autophoretic motion in three dimensions

Abstract

Janus particles with the ability to move phoretically in self-generated chemical concentration gradients are model systems for active matter. Their motion typically consists of straight paths with rotational diffusion being the dominant reorientation mechanism. In this paper, we show theoretically that by a suitable surface coverage of both activity and mobility, translational and rotational motion can be induced arbitrarily in three dimensions. The resulting trajectories are in general helical, and their pitch and radius can be controlled by adjusting the angle between the translational and angular velocity. Building on the classical mathematical framework for axisymmetric self-phoretic motion under fixed-flux chemical boundary conditions, we first show how to calculate the most general three-dimensional motion for an arbitrary surface coverage of a spherical particle. After illustrating our results on surface distributions, we next introduce a simple intuitive patch model to serve as a guide for designing arbitrary phoretic spheres.

Graphical abstract: Autophoretic motion in three dimensions

Article information

Article type
Paper
Submitted
26 Jan 2018
Accepted
08 Mar 2018
First published
08 Mar 2018

Soft Matter, 2018,14, 3304-3314

Autophoretic motion in three dimensions

M. Lisicki, S. Y. Reigh and E. Lauga, Soft Matter, 2018, 14, 3304 DOI: 10.1039/C8SM00194D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements