Jump to main content
Jump to site search


Thermally activated motion of a contact line over defects

Author affiliations

Abstract

At the nanometer scale, the motion of a contact line separating a dry from a wet region is limited by the presence of surface heterogeneities that pin it. Here we revisit the seminal model proposed by Joanny and de Gennes to include the influence of thermal noise and viscosity using a Langevin model with two degrees of freedom: the average position of the contact line and its distortion. We identify the conditions under which the dynamics in a velocity-driven experiment can in fact be described by a constant forcing at small scale. We then relate the asymptotic properties of the relation between force and contact line velocity to the properties of the defects. In particular, we show that Kramers’ approximation misses the strong asymmetry between advancing and receding directions. Finally, we show how to use the model to fit experimental data and extract the salient features of the surface energy landscape.

Graphical abstract: Thermally activated motion of a contact line over defects

Back to tab navigation

Publication details

The article was received on 09 Nov 2017, accepted on 24 Jan 2018 and first published on 26 Jan 2018


Article type: Paper
DOI: 10.1039/C7SM02211E
Citation: Soft Matter, 2018, Advance Article
  •   Request permissions

    Thermally activated motion of a contact line over defects

    H. Perrin, R. Lhermerout, K. Davitt, E. Rolley and B. Andreotti, Soft Matter, 2018, Advance Article , DOI: 10.1039/C7SM02211E

Search articles by author

Spotlight

Advertisements